Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Viruses ; 14(12)2022 12 18.
Article in English | MEDLINE | ID: covidwho-2163630

ABSTRACT

The recent development and mass administration of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) vaccines allowed for disease control, reducing hospitalizations and mortality. Most of these vaccines target the SARS-CoV-2 Spike (S) protein antigens, culminating with the production of neutralizing antibodies (NAbs) that disrupt the attachment of the virus to ACE2 receptors on the host cells. However, several studies demonstrated that the NAbs typically rise within a few weeks after vaccination but quickly reduce months later. Thus, multiple booster administration is recommended, leading to vaccination hesitancy in many populations. Detecting serum anti-SARS-CoV-2 NAbs can instruct patients and healthcare providers on correct booster strategies. Several in vitro diagnostics kits are available; however, their high cost impairs the mass NAbs diagnostic testing. Recently, we engineered an ACE2 mimetic that interacts with the Receptor Binding Domain (RBD) of the SARS-2 S protein. Here we present the use of this engineered mini-protein (p-deface2 mut) to develop a detection assay to measure NAbs in patient sera using a competitive ELISA assay. Serum samples from twenty-one patients were tested. Nine samples (42.8%) tested positive, and twelve (57.1%) tested negative for neutralizing sera. The data correlated with the result from the standard commercial assay that uses human ACE2 protein. This confirmed that p-deface2 mut could replace human ACE2 in ELISA assays. Using bacterially expressed p-deface2 mut protein is cost-effective and may allow mass SARS-CoV-2 NAbs detection, especially in low-income countries where economical diagnostic testing is crucial. Such information will help providers decide when a booster is required, reducing risks of reinfection and preventing the administration before it is medically necessary.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2 , COVID-19/diagnosis , Antibodies, Viral , Antibodies, Neutralizing , Spike Glycoprotein, Coronavirus
2.
Data Brief ; 38: 107278, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1351628

ABSTRACT

We present supplementary data for the published article, "Hitting the diagnostic sweet spot: Point-of-care SARS-CoV-2 salivary antigen testing with an off-the-shelf glucometer" [1]. The assay described is designed to be performed at home or in a clinic without expensive instrumentation or professional training. SARS-CoV-2 is detected by an aptamer-based assay that targets the Nucleocapsid (N) or Spike (S) antigens. Binding of the N or S protein to their respective aptamer results in the competitive release of a complementary antisense-invertase enzyme complex. The released enzyme then catalyzes the conversion of sucrose to glucose that is measured by an off-the-shelf glucometer. The data presented here describe the optimization of the assay parameters and their contribution to developing this aptamer-based assay to detect SARS-CoV-2. The assay performance was checked in a standard buffer, contrived samples, and patient samples validated with well-established scientific methods. The resulting dataset can be used to further develop glucometer-based assays for diagnosing other communicable and non-communicable diseases.

3.
Biosens Bioelectron ; 180: 113111, 2021 May 15.
Article in English | MEDLINE | ID: covidwho-1108095

ABSTRACT

Significant barriers to the diagnosis of latent and acute SARS-CoV-2 infection continue to hamper population-based screening efforts required to contain the COVID-19 pandemic in the absence of widely available antiviral therapeutics or vaccines. We report an aptamer-based SARS-CoV-2 salivary antigen assay employing only low-cost reagents ($3.20/test) and an off-the-shelf glucometer. The test was engineered around a glucometer as it is quantitative, easy to use, and the most prevalent piece of diagnostic equipment globally, making the test highly scalable with an infrastructure that is already in place. Furthermore, many glucometers connect to smartphones, providing an opportunity to integrate with contact tracing apps, medical providers, and electronic health records. In clinical testing, the developed assay detected SARS-CoV-2 infection in patient saliva across a range of viral loads - as benchmarked by RT-qPCR - within 1 h, with 100% sensitivity (positive percent agreement) and distinguished infected specimens from off-target antigens in uninfected controls with 100% specificity (negative percent agreement). We propose that this approach provides an inexpensive, rapid, and accurate diagnostic for distributed screening of SARS-CoV-2 infection at scale.


Subject(s)
Antigens, Viral/analysis , Biosensing Techniques/methods , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Point-of-Care Testing , SARS-CoV-2/immunology , Saliva/virology , Adult , COVID-19 Testing , Coronavirus Nucleocapsid Proteins/analysis , Female , Humans , Male , Phosphoproteins/analysis , SARS-CoV-2/isolation & purification , SELEX Aptamer Technique , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/analysis
SELECTION OF CITATIONS
SEARCH DETAIL